Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 801
Filtrar
1.
BMC Cancer ; 24(1): 504, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644473

RESUMO

BACKGROUND: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS: The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION: The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Camundongos Nus , Podofilotoxina , Carcinoma de Pequenas Células do Pulmão , Animais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Camundongos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapêutico , Linhagem Celular Tumoral , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Proteólise/efeitos dos fármacos
2.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
3.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38393642

RESUMO

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Assuntos
Antineoplásicos , Podofilotoxina , Camundongos , Animais , Humanos , Feminino , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Simulação de Acoplamento Molecular , Camundongos Nus , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química
4.
Eur J Med Chem ; 260: 115780, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666045

RESUMO

E-selectin, which is highly expressed in vascular endothelial cells near tumor and get involved in the all tumor growth steps: occurrence, proliferation and metastasis, is considered as a promise targeted protein for antitumor drug discovery. Herein, we would like to report the design, preparation and the anticancer evaluation of the peptide-PEG-podophyllotoxin conjugate(PEG-Pep-PODO), in which the short peptide (CIELLQAR) was used as the E-selectin ligand for the targeting purpose and the PEG portion the molecule got the conjugate self-assembled to form a water soluble nanoparticle. In vitro release study showed that the conjugated and entrapped PODO could be released simultaneously in the presence of GSH (highly expressed in tumor environmental conditions) and the GSH would catalyze the break of the disufur bond which linked of the PODO and the peptide-PEG portion of the conjugate. Cell adhesion test of the PEG-Pep-PODO indicated that E-selectin ligand peptide CIELLQAR could get specifically and efficiently binding to the E-selectin expressing human umbilical vein endothelial cells (HUVEC). In vitro cytotoxicity assay further revealed that PEG-Pep-PODO significantly improved the selectivity of PEG-Pep-PODO for killing the tumor cells and normal cells compared with PODO solution formulation. More importantly, the in vivo experiment demonstrated that the conjugate would accumulate of the PODO payload in tumor through targeting endothelial cells in the tumor microenvironment, which resulted in the much improved in vivo inhibition of tumor growth, intratumoral microvessel density, and decreased systemic toxicity of this nanoparticle over the free PODO. Furthermore, this water soluble conjugate greatly improved the pharmacokinetic properties of the mother molecule.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Podofilotoxina/farmacologia , Selectina E , Ligantes , Peptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Polietilenoglicóis , Microambiente Tumoral
5.
Int J Mol Med ; 52(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37711052

RESUMO

Podophyllotoxin (PPT), which is derived from the podophyllum plant, exhibits marked cytotoxic effects against cancer cells; however, the precise molecular mechanism underlying its activity against human oral squamous cell carcinoma (OSCC) has not been elucidated. In the present study, the mechanism by which PPT induced cytotoxicity in two OSCC cell lines, HSC3 and HSC4, was determined. The effects of PPT on cytotoxicity in HSC3 and HSC4 cells were analyzed using Annexin V/PI double staining, Sub­G1 analysis, soft agar assays, western blotting, and quantitative PCR. The changes in the mitochondrial membrane potential were assessed using a JC­1 assay and cytosolic and mitochondrial fractionation. A myeloid cell leukemia­1 (Mcl­1) overexpression cell lines were also established to study the role of Mcl­1 on apoptosis. The results showed that PPT inhibited the growth of the two human OSCC cell lines and induced apoptosis, which was accompanied by mitochondrial membrane depolarization. Compared with the control, PPT reduced the expression of Mcl­1 in both cell lines through a proteasome­dependent protein degradation process. Overall, these results suggested that targeting of Mcl­1 protein by PPT induced apoptosis, providing a foundation for further pre­clinical and clinical study of its value in the management of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Leucemia , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Podofilotoxina/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias Bucais/tratamento farmacológico , Células Mieloides
6.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570682

RESUMO

The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.


Assuntos
Cisteína , Podofilotoxina , Animais , Suínos , Administração Cutânea , Podofilotoxina/farmacologia , Pele , Epiderme , Tamanho da Partícula , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
7.
J Nat Prod ; 86(7): 1844-1854, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37395092

RESUMO

Cancer is a major disease threatening human health worldwide, among which non-small-cell lung cancer (NSCLC) is the most deadly. Clinically, almost all anticancer drugs eventually fail to consistently benefit patients due to serious drug resistance. AKT is a key effector of the PI3K/AKT/mTOR pathway, which is closely related to the occurrence, development, and drug resistance of tumors. Herein, we first designed and synthesized 20 kinds of novel hybrid molecules targeting both tubulin and AKT based on a podophyllotoxin (PPT) skeleton through computer-aided drug design. By CCK8 assay, we screened the compound D1-1 (IC50 = 0.10 µM) with the strongest inhibitory activity against H1975 cells, and its activity was 100 times higher than PPT (IC50 = 12.56 µM) and 300 times higher than gefitinib (IC50 = 32.15 µM). Affinity analysis results showed that D1-1 not only retained the tubulin targeting of PPT but also showed strong AKT targeting. Subsequent pharmacological experiments showed that D1-1 significantly inhibited the proliferation and metastasis of H1975 cells and slightly induced their apoptosis by inhibiting both tubulin polymerization and the AKT pathway activation. Collectively, these data demonstrate that the novel hybrid molecule D1-1 may be an excellent lead compound for the treatment of human NSCLC as a dual inhibitor of tubulin and AKT.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fenilacetatos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose
8.
Adv Healthc Mater ; 12(22): e2203144, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37141264

RESUMO

By conjugating a chemotherapeutic candidate drug 4ß-NH-(5-aminoindazole)-podophyllotoxin (ßIZP) and an immunosuppressive protein galectin-1 targeted aptamer AP74, a chemo-immunotherapy molecule (AP74-ßIZP) is developed against liver cancer. AP74-ßIZP can target galectin-1 and enrich the tumor microenvironment to improve the tumor inhibition ratio by 6.3%, higher than that of ßIZP in a HepG2 xenograft model. In safety evaluation, ßIZP cannot be released from AP74-ßIZP in normal tissues with low glutathione level. Therefore, the degrees of organs injury and myelosuppression after the treatment with AP74-ßIZP are lower than those with ßIZP. After 21 d treatment at a drug dose of 5 mg kg-1 , AP74-ßIZP does not cause weight loss in mice, while the weight is significantly reduced by 24% and 14% from oxaliplatin and ßIZP, respectively. In immune synergy, AP74-IZP enhances CD4/CD8 cell infiltration to promote the expression of cell factor (i.e., IL-2, TNF-α, and IFN-γ), which further improves the antitumor activity. The tumor inhibition ratio of AP74-ßIZP is 70.2%, which is higher than that of AP74 (35.2%) and ßIZP (48.8%). Because of the dual effects of chemotherapy and immunotherapy, AP74-ßIZP exhibits superior activity and lower toxicity. The approach developed in this work could be applicable to other chemotherapy drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Podofilotoxina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Galectina 1 , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
9.
Drug Discov Today ; 28(8): 103640, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236524

RESUMO

Numerous tubulin-targeted podophyllotoxin congeners have been designed and synthesized to overcome the poor water solubility of podophyllotoxin and improve its pharmaceutical characteristics. Understanding the interaction of tubulin with its downstream signal transduction pathways is important for insights into the role of tubulin in the anticancer action of podophyllotoxin-based conjugates. In this review, we provide a detailed account of recent advances in tubulin targeting-podophyllotoxin derivatives with a focus on their antitumor action and potential molecular signaling pathways directly involved in tubulin depolymerization. Such information will be of benefit to researchers designing and developing anticancer drugs derived from podophyllotoxin. Moreover, we also discuss the associated challenges and future opportunities in this field.


Assuntos
Antineoplásicos , Podofilotoxina , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade
10.
Cancer Immunol Res ; 11(5): 583-599, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921097

RESUMO

Cyclic GMP-AMP (cGAMP) is a second messenger that activates the stimulator of interferon genes (STING) innate immune pathway to induce the expression of type I IFNs and other cytokines. Pharmacologic activation of STING is considered a potent therapeutic strategy in cancer. In this study, we used a cell-based phenotypic screen and identified podophyllotoxin (podofilox), a microtubule destabilizer, as a robust enhancer of the cGAMP-STING signaling pathway. We found that podofilox enhanced the cGAMP-mediated immune response by increasing STING-containing membrane puncta and the extent of STING oligomerization. Furthermore, podofilox changed the trafficking pattern of STING and delayed trafficking-mediated STING degradation. Importantly, the combination of cGAMP and podofilox had profound antitumor effects on mice by activating the immune response through host STING signaling. Together, these data provide insights into the regulation of cGAMP-STING pathway activation and demonstrate what we believe to be a novel approach for modulating this pathway and thereby promoting antitumor immunity.


Assuntos
Neoplasias , Podofilotoxina , Animais , Camundongos , Podofilotoxina/farmacologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Imunidade Inata
11.
Biomed Pharmacother ; 160: 114328, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739759

RESUMO

Increased activation and proliferation of T lymphocytes plays an essential role in the development of chronic inflammation and autoimmune diseases. Currently used immunosuppressive drugs often do not provide long-lasting relief of symptoms and show a gradual loss of efficacy over time, and are accompanied by various side effects. Therefore, novel immunosuppressive lead substances are needed. For this purpose, an in-house library consisting of 600 extracts of plants from Panama was screened for inhibition of human T lymphocyte proliferation. As one of the hits, an ethyl acetate extract from the aerial parts of Hyptis brachiata (Lamiaceae) exhibited strong inhibitory effects. Subsequent investigation resulted in the isolation of seven aryltetralin lignans, five arylnaphthalene lignans, two flavonoids, three triterpenes, and cinnamyl cinnamate. Aryltetralin lignans inhibited T lymphocyte proliferation in a concentration-dependent manner without induction of apoptosis. No relevant inhibition was observed for the arylnaphthalene lignans, flavonoids, and triterpenes. Additional cell cycle arrest investigations revealed that isolated aryltetralin lignans potently inhibited cell division in G2/M phase similarly to podophyllotoxin. Multifluorescence panel analyses of the extract also showed weak suppressive effects on the production of IL-2 and TNF-α. Therefore, preparations made out of H. brachiata could be further explored as an interesting herbal alternative in the treatment of autoimmune diseases.


Assuntos
Hyptis , Lamiaceae , Lignanas , Humanos , Lignanas/farmacologia , Podofilotoxina/farmacologia , Proliferação de Células
12.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677621

RESUMO

Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 µM) and H460 cell line (IC50 = 0.89 µM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.


Assuntos
Antineoplásicos , Relação Estrutura-Atividade , 4-Quinolonas/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Podofilotoxina/farmacologia , Estrutura Molecular , Proliferação de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
13.
Biomed Pharmacother ; 158: 114145, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586242

RESUMO

The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.


Assuntos
Antineoplásicos , Lignanas , Neoplasias , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Antivirais , Neoplasias/tratamento farmacológico
14.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296600

RESUMO

The objective of this study was to determine whether (5S)-5-(4-benzyloxy-3,5-dimethoxy-phenyl)-5,9-dihydro-8H-furo [3',4':6,7] naphtho [2,3-d] [1,3]dioxol-6-one (JNC-1043), which is a novel chemical derivative of ß-apopicropodophyllin, acts as a novel potential anticancer reagent and radiosensitizer in colorectal cancer (CRC) cells. Firstly, we used MTT assays to assess whether JNC-1043 could inhibit the cell proliferation of HCT116 and DLD-1 cells. The IC50 values of these cell lines were calculated as 114.5 and 157 nM, respectively, at 72 h of treatment. Using doses approximating the IC50 values, we tested whether JNC-1043 had a radiosensitizing effect in the CRC cell lines. Clonogenic assays revealed that the dose-enhancement ratios (DER) of HCT116 and DLD-1 cells were 1.53 and 1.25, respectively. Cell-counting assays showed that the combination of JNC-1043 and γ-ionizing radiation (IR) enhanced cell death. Treatment with JNC-1043 or IR alone induced cell death by 50~60%, whereas the combination of JNC-1043 and IR increased this cell death by more than 20~30%. Annexin V-propidium iodide assays showed that the combination of JNC-1043 and IR increased apoptosis by more 30~40% compared to that induced by JNC-1043 or IR alone. DCFDA- and MitoSOX-based assays revealed that mitochondrial ROS production was enhanced by the combination of JNC-1043 and IR. Finally, we found that suppression of ROS by N-acetylcysteine (NAC) blocked the apoptotic cell death induced by the combination of JNC-1043 and IR. The xenograft model also indicated that the combination of JNC-1043 and IR increased apoptotic cell death in tumor mass. These results collectively suggest that JNC-1043 acts as a radiosensitizer and exerts anticancer effects against CRC cells by promoting apoptosis mediated by mitochondrial ROS.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Radiossensibilizantes , Humanos , Podofilotoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Anexina A5 , Acetilcisteína/farmacologia , Propídio/farmacologia , Radiossensibilizantes/farmacologia , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
15.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142118

RESUMO

Juniperus sabina L. (J. sabina) has been an important plant in traditional medicine since ancient times. Its needles are rich in podophyllotoxin, a precursor compound to anti-tumor drugs. However, no systematic research has been done on J. sabina as a source of podophyllotoxins or their biological action. Hence, extracts of podophyllotoxin and deoxypodophyllotoxin were the main optimization targets using the Box-Behnken design (BBD) and response surface methodology (RSM). The total phenol content and antioxidant activity of J. sabina needle extract were also optimized. Under the optimal process conditions (ratio of material to liquid (RLM) 1:40, 90% methanol, and ultrasonic time 7 min), the podophyllotoxin extraction rate was 7.51 mg/g DW, the highest level reported for Juniperus spp. distributed in China. To evaluate its biological potential, the neuroprotective acetyl- and butyrylcholinease (AChE and BChE) inhibitory abilities were tested. The needle extract exhibited significant anti-butyrylcholinesterase activity (520.15 mg GALE/g extract), which correlated well with the high levels of podophyllotoxin and deoxypodophyllotoxin. This study shows the potential medicinal value of J. sabina needles.


Assuntos
Juniperus , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Metanol , Fenóis , Extratos Vegetais/farmacologia , Podofilotoxina/farmacologia
16.
Nat Prod Rep ; 39(9): 1856-1875, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35913409

RESUMO

Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.


Assuntos
Lignanas , Podofilotoxina , Vias Biossintéticas , Catálise , Podofilotoxina/farmacologia
17.
Molecules ; 27(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956979

RESUMO

C4 variation of 4'-O-demethyl-epipodophyllotoxin (DMEP) is an effective approach to optimize the antitumor spectra of this compound class. Accordingly, two series of novel DMEP derivatives were synthesized, and as expected, the antitumor spectra of these derivatives varied with different C4 substituents. Notably, most compounds showed significant inhibition against the etoposide (2)-resistant KBvin cells. Four of the compounds (11, 18, 27 and 28) induced protein-linked DNA break (PLDB) levels higher than those of GL-331 (6) and 2, and are assumed to be topoisomerase II (topo II) poisons more potent than 6 and 2. Compound 28, a potent topo II poison highly effective against KBvin cells, was further evaluated with a panel of tumor cells and was most active against HepG2. This compound also exhibited apparent in vivo antitumor efficacy in hepatoma 22 (H22) mouse model. The results indicated that C4 derivation of DMEP is a feasible approach to identify potent topo II inhibitors with optimized antitumor profiles.


Assuntos
Antineoplásicos , Podofilotoxina , Animais , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Podofilotoxina/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
18.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012385

RESUMO

The emergence of phytopathogenic bacteria resistant to antibacterial agents has rendered previously manageable plant diseases intractable, highlighting the need for safe and environmentally responsible agrochemicals. Inhibition of bacterial cell division by targeting bacterial cell division protein FtsZ has been proposed as a promising strategy for developing novel antibacterial agents. We previously identified 4'-demethylepipodophyllotoxin (DMEP), a naturally occurring substance isolated from the barberry species Dysosma versipellis, as a novel chemical scaffold for the development of inhibitors of FtsZ from the rice blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Therefore, constructing structure-activity relationship (SAR) studies of DMEP is indispensable for new agrochemical discovery. In this study, we performed a structure-activity relationship (SAR) study of DMEP derivatives as potential XooFtsZ inhibitors through introducing the structure-based virtual screening (SBVS) approach and various biochemical methods. Notably, prepared compound B2, a 4'-acyloxy DMEP analog, had a 50% inhibitory concentration of 159.4 µM for inhibition of recombinant XooFtsZ GTPase, which was lower than that of the parent DMEP (278.0 µM). Compound B2 potently inhibited Xoo growth in vitro (minimum inhibitory concentration 153 mg L-1) and had 54.9% and 48.4% curative and protective control efficiencies against rice blight in vivo. Moreover, compound B2 also showed low toxicity for non-target organisms, including rice plant and mammalian cell. Given these interesting results, we provide a novel strategy to discover and optimize promising bactericidal compounds for the management of plant bacterial diseases.


Assuntos
Oryza , Xanthomonas , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Divisão Celular , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Podofilotoxina/metabolismo , Podofilotoxina/farmacologia , Relação Estrutura-Atividade
19.
Eur J Pharmacol ; 928: 175089, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35688183

RESUMO

Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Lignanas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Lignanas/farmacologia , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico
20.
Mol Pharm ; 19(7): 2092-2104, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35533302

RESUMO

Because of the complexity of cancer ecosystems, the efficacy of single-agent chemotherapy is limited. Herein, we report the use of cationic nanoparticles (designated PPCNs) generated from a chemically modified form of the chemotherapeutic agent podophyllotoxin (PPT) to deliver both microRNA-424 (miR-424) and PPT to tumor cells, thus combining chemotherapy and gene therapy. We evaluated the optimal loading ratio of miR-424─which targets programmed cell death ligand 1 (PD-L1) mRNA and reduces PD-L1 production, thus promoting the attack of tumor cells by T cells─for effective delivery of miR-424 and PPCNs into nonsmall-cell lung cancer cells (H460). Because miR-424 can reverse chemotherapy resistance, treatment of the tumor cells with the combination of miR-424 and PPT enhanced their sensitivity to PPT. Because miR-424 and the PPCNs regulated PD-L1 production in different ways, the miR-424@PPCN complexes were significantly more efficacious than either miR-424 or PPCNs alone. We also demonstrated that treatment of tumor-bearing mice with these complexes significantly inhibited tumor growth and extended survival. Moreover, additional in vitro experiments revealed that the complexes could remodel the tumor immune microenvironment, relieve immunosuppression, and achieve immune normalization. This novel system for delivering a combination of PPT and miR-424 shows great potential for the multimodal treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Ecossistema , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , MicroRNAs/genética , Podofilotoxina/farmacologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...